嵌套型燃烧室缓冲结构及吸能特性研究

孙梦华, 展婷变, 赵河明, 李小军, 董英娟

装备环境工程 ›› 2025, Vol. 22 ›› Issue (12) : 78-85.

PDF(2870 KB)
PDF(2870 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (12) : 78-85. DOI: 10.7643/ issn.1672-9242.2025.12.010
重大工程装备

嵌套型燃烧室缓冲结构及吸能特性研究

  • 孙梦华1,2, 展婷变2,*, 赵河明1, 李小军3, 董英娟4
作者信息 +

Nested Combustion Chamber Buffer Structure and Its Energy Absorption Characteristics

  • SUN Menghua1,2, ZHAN Tingbian2,*, ZHAO Heming1, LI Xiaojun3, DONG Yingjuan4
Author information +
文章历史 +

摘要

目的 针对嵌套型燃烧室在极端气动冲击条件下易发生结构失效的问题,研究薄壁金属管缓冲结构的吸能特性,通过多参数优化设计提升其缓冲性能,为高过载工况下装备的安全防护提供理论支持。方法 采用有限元软件LS-DYNA对15组不同结构参数的薄壁金属管进行模拟仿真,研究不同锥角(7°~25°)和材料(2A12T4铝合金、7075铝合金、45#钢)对缓冲性能的影响。基于塑性变形理论建立扩径力解析模型,通过数值模拟获取缓冲力-行程曲线、吸能效率(I)等关键参数,采用控制变量法分析各参数对吸能特性的影响规律。结果 缓冲过程呈现波动、稳定和静止三阶段特征,波动阶段缓冲力由峰值35.9~57.8 kN快速衰减,稳定阶段保持相对恒定。当锥角为20°时,7075铝(J24组)表现出最优性能,平均缓冲力达27.514 kN,较7°锥角数值提升109.3%,吸能效率达89.55%。材料性能分析表明,屈服强度为505 MPa的7075铝合金较2A12T4(325 MPa)承载能力提升41.2%,但45#钢因密度过高,导致单位质量吸能效率降低62.8%。结论 20°锥角与7075铝的组合综合吸能性能最佳。研究结果揭示了锥角与材料性能对缓冲特性的作用机制,为嵌套型燃烧室缓冲系统的优化设计提供了重要依据。后续需进一步研究疲劳损伤机理及复合结构优化方案。

Abstract

To address the issue that nested combustion chambers are prone to structural failure under extreme aerodynamic impact conditions, the work aims to investigate the energy absorption characteristics of thin-walled metal tube buffer structures and enhance their cushioning performance through multi-parameter optimization design, thereby providing theoretical support for equipment safety protection under high-overload conditions. The finite element software LS-DYNA was used to conduct numerical simulation on 15 sets of thin-walled metal tubes with different structural parameters and the effects of different cone angles (ranging from 7° to 25°) and different materials (including 2A12T4 aluminum alloy, 7075 aluminum alloy, and 45#steel) on the cushioning performance were studied. An analytical model of the expansion force was established based on plastic deformation theory, and key parameters such as the buffer force-stroke curve and energy absorption efficiency (I) were obtained through numerical simulation, with the control variable method employed to analyze the effects of various parameters on the energy absorption characteristics. A three-stage buffering process of fluctuation, stabilization, and stasis appeared. In the fluctuation stage, the buffer force rapidly decayed from a peak of 35.9-57.8 kN and remained relatively constant during the stabilization stage. Specifically, at a 20° cone angle, the 7075 aluminum alloy specimen (group J24) exhibited the optimal performance, with an average buffer force of 27.514 kN (a 109.3% improvement over the 7° cone angle specimen) and an energy absorption efficiency of 89.55%. Material performance analysis indicated that the 7075 aluminum alloy with a yield strength of 505 MPa showed a 41.2% increase in load-bearing capacity compared to 2A12-T4 (325 MPa), while the 45# steel exhibited a 62.8% reduction in mass-specific energy absorption efficiency due to its higher density. In conclusion, the combination of a 20° cone angle and 7075 aluminum alloy offers the best comprehensive energy absorption performance, and the findings reveal the mechanism through which cone angle and material properties affect buffer characteristics, providing a critical basis for the optimized design of buffer systems in nested combustion chambers. Future work should focus on fatigue damage mechanisms and the optimization of composite structures.

关键词

嵌套型燃烧室 / 缓冲结构 / 薄壁金属管 / 吸能特性 / 数值模拟 / 参数优化 / 高过载防护

Key words

nested combustion chamber / buffer structure / thin-walled metal tube / energy absorption characteristics / numerical simulation / parameter optimization / high-overload protection

引用本文

导出引用
孙梦华, 展婷变, 赵河明, 李小军, 董英娟. 嵌套型燃烧室缓冲结构及吸能特性研究[J]. 装备环境工程. 2025, 22(12): 78-85 https://doi.org/10.7643/ issn.1672-9242.2025.12.010
SUN Menghua, ZHAN Tingbian, ZHAO Heming, LI Xiaojun, DONG Yingjuan. Nested Combustion Chamber Buffer Structure and Its Energy Absorption Characteristics[J]. Equipment Environmental Engineering. 2025, 22(12): 78-85 https://doi.org/10.7643/ issn.1672-9242.2025.12.010
中图分类号: TJ410   

参考文献

[1] DULA M, KRASZKIEWICZ A, PARAFINIUK S.Combustion Efficiency of Various Forms of Solid Biofuels in Terms of Changes in the Method of Fuel Feeding into the Combustion Chamber[J]. Energies, 2024, 17(12): 2853.
[2] LEI B, ZHANG M, LIN H Y, et al.Optimization Design Containing Dimension and Buffer Parameters of Landing Legs for Reusable Landing Vehicle[J]. Chinese Journal of Aeronautics, 2022, 35(3): 234-249.
[3] 马春生, 张金换, 杜汇良, 等. 胀环式飞船座椅缓冲器建模方法研究[J]. 振动与冲击, 2009, 28(4): 90-92.
MA C S, ZHANG J H, DU H L, et al.Numerical Model Development for an Expanding-Tube Seat-Bumper in a Spacecraft[J]. Journal of Vibration and Shock, 2009, 28(4): 90-92.
[4] 梁增友, 邓德志, 吴鸿超, 等. 泡沫铝与金属管复合结构降低弹载设备过载效能研究[J]. 兵工学报, 2016, 37(S2): 1-7.
LIANG Z Y, DENG D Z, WU H C, et al.Study on the Efficiency of Reducing Overload of Missile-Borne Equipment by Composite Structure of Aluminum Foam and Metal Tube[J]. Acta Armamentarii, 2016, 37(S2): 1-7.
[5] LIU Q, WANG W T, ZHANG W F.Study on Buffering Performance of Thin-Walled Metal Tube with Different Angles[J]. Defence Technology, 2018, 14(6): 702-708.
[6] 谢清平, 乔凯俐. 夹芯薄壁金属管结构的缓冲力模型[J]. 中国科技信息, 2024(6): 117-120.
XIE Q P, QIAO K L.Buffering Force Model of Sandwich Thin-Walled Metal Tube Structure[J]. China Science and Technology Information, 2024(6): 117-120.
[7] 罗昌杰, 刘荣强, 邓宗全, 等. 泡沫铝填充薄壁金属管塑性变形缓冲器吸能特性的试验研究[J]. 振动与冲击, 2009, 28(10): 26-30.
LUO C J, LIU R Q, DENG Z Q, et al.Experimental Study on a Plastic Deformation Energy Absorber Filled with Aluminum Foam in a Thin-Walled Metal Tube[J]. Journal of Vibration and Shock, 2009, 28(10): 26-30.
[8] 吴鸿超, 梁增友, 冯阳, 等. 薄壁金属管在中高速冲击下的缓冲特性研究[J]. 应用力学学报, 2016, 33(2): 325-331.
WU H C, LIANG Z Y, FENG Y, et al.Energy Absorption Characteristics of the Expansion of Thin-Walled Circular Metal Tubes by Middle-Speed and High-Speed Impact of a Rigid Cylinder[J]. Chinese Journal of Applied Mechanics, 2016, 33(2): 325-331.
[9] 陈书剑, 肖守讷, 朱涛, 等. 5083P-O和6008-T6铝合金的应变率效应对缓冲器缓冲特性的影响[J]. 中南大学学报(自然科学版), 2019, 50(11): 2665-2675.
CHEN S J, XIAO S, ZHU T, et al.Influence of 5083P-O and 6008-T6 Aluminum Alloys Strain Rate Effect on Cushioning Characteristics of Thin-Walled Circular Metal Tube Buffer[J]. Journal of Central South University (Science and Technology), 2019, 50(11): 2665-2675.
[10] 徐磊, 贾大伟, 俞麒峰. 薄壁金属管吸能器的吸能特性分析[J]. 计算机辅助工程, 2013, 22(S2): 1-5.
XU L, JIA D W, YU Q F.Analysis of Energy Absorption Characteristics of Thin-Walled Metal Tube Energy Absorber[J]. Computer Aided Engineering, 2013, 22(S2): 1-5.
[11] 胡国林. 薄壁金属管脉动液压胀形模具装置及试验研究[J]. 模具工业, 2023, 49(9): 60-64.
HU G L.Experimental Study on Pulsating Hydroforming Device for Thin-Walled Metal Tube[J]. Die & Mould Industry, 2023, 49(9): 60-64.
[12] 胡国林, 潘春荣. 脉动液压加载条件下薄壁金属管成形规律[J]. 塑性工程学报, 2023, 30(12): 16-23.
HU G L, PAN C R.Forming Laws of Thin-Walled Metal Tube under Pulsating Hydraulic Loading[J]. Journal of Plasticity Engineering, 2023, 30(12): 16-23.
[13] 陈军红, 张方举, 谢若泽, 等. 泡沫铝填充薄壁金属管结构冲击吸能特性研究[J]. 包装工程, 2022, 43(11): 154-160.
CHEN J H, ZHANG F J, XIE R Z, et al.Impact Energy Absorption Characteristics of Thin-Walled Metallic Circular Tube Structure with Aluminium Foam Filler[J]. Packaging Engineering, 2022, 43(11): 154-160.
[14] HAO X Q, YU J, HE W D, et al.Factors Affecting the Compression and Energy Absorption Properties of Small-Sized Thin-Walled Metal Tubes[J]. International Journal of Aerospace Engineering, 2020, 2020: 6135925.
[15] KOLOUSHANI M, FOROUZAN M R, NIROOMAND M R.On the Crashworthiness Performance of Thin-Walled Circular Tubes: Effect of Diameter and Thickness[J]. Mechanics of Advanced Materials and Structures, 2024, 31(20): 4805-4817.
[16] ZHANG S L, KUBOKI T, AKIYAMA M, et al.Influence of Mechanical Properties of Tube on Forming Limits and Deformation Characteristics in an Expansion Drawing Process[J]. Journal of Manufacturing Science and Engineering, 2024, 146(7): 071005.
[17] TAK S K, IQBAL M A.Axial Compression Behaviour of Thin-Walled Metallic Tubes under Quasi-Static and Dynamic Loading[J]. Thin-Walled Structures, 2021, 159: 107261.
[18] ZENG G, LI K X, ZHAO C J, et al.Dynamic Deformation Characteristics and Microstructure Evolution of AZ31 Magnesium Alloy Thin-Walled Tube during Multi-Pass Ball Spinning Process[J]. The International Journal of Advanced Manufacturing Technology, 2025, 137(1): 913-931.
[19] ZHOU Y, ZHAO C, ZHONG X G, et al.Deformation and Energy Absorption Properties of Porous Metal-Concrete Interpenetrating Phase Composites Filled Thin-Walled Tubes[J]. International Journal of Steel Structures, 2024, 24(1): 14-32.
[20] MOTA A, KOLIESNIKOVA D, TEZAUR I, et al.A Fundamentally New Coupled Approach to Contact Mechanics via the Dirichlet-Neumann Schwarz Alternating Method[J]. International Journal for Numerical Methods in Engineering, 2025, 126(9): e70039.
[21] AMARA I I, COLORADO S S U, MAHMOUD H, et al. Performance Optimization of the Nonlinear Response of Steel Buildings Controlled Using Nonlinear Energy Sinks[J]. Journal of Structural Engineering, 2025, 151(6): 04025052.
[22] 赵文杰, 梁增友, 时文超, 等. 高速冲击下薄壁金属管/泡沫铝复合结构缓冲吸能研究[C]//OSEC首届兵器工程大会论文集. 重庆: 中国兵工学会, 2017.ZHAO W J, LIANG Z Y, SHI W C, et al. Research on Buffering and Energy Absorption of Thin-Walled Metal Tube/Aluminum Foam Composite Structure under High-Speed Impact[C]//Proceedings of the First OSEC Conference on Weaponry Engineering. Chongqing: China Ordnance Society, 2017.
[23] MALFROY J, STEELANT J, VANDEPITTE D.Thin-Walled Conformable Low-Pressure Tanks with Large Taper Angles[J]. Engineering Structures, 2025, 336: 120345.
[24] WEI L, ZHAO W J, LI S J, et al.Research on Optimal Structure Design of Thin-Walled Metal Tube[J]. Journal of Research in Science and Engineering, 2022, 4(8): 27-11.
[25] CHING Z F, POKAAD A Z.Experiment Study of Effect of Apex Angle of Taper round Tube under Quasi Static Axial Crushing on Energy Absorption[C]//Proceedings of the Multimedia University Engineering Conference (MECON 2022). Dordrecht: Atlantis Press International BV, 2022.

PDF(2870 KB)

Accesses

Citation

Detail

段落导航
相关文章

/